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Abstract

Indecipherable black boxes are common in machine learning (ML), but applications increasingly
require explainable artificial intelligence (XAI). The core of XAI is to establish transparent
and interpretable data-driven algorithms. This work provides concrete tools for XAI in sit-
uations where prior knowledge must be encoded and untrustworthy inferences flagged. We
use the “learn to optimize” (L2O) methodology wherein each inference solves a data-driven
optimization problem. Our L2O models are straightforward to implement, directly encode
prior knowledge, and yield theoretical guarantees (e.g. satisfaction of constraints). We also
propose use of interpretable certificates to verify whether model inferences are trustworthy.
Numerical examples are provided in the applications of dictionary-based signal recovery, CT
imaging, and arbitrage trading of cryptoassets. Code and additional documentation can be
found at xai-l2o.research.typal.academy.
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Figure 1: The L2O model is composed of parts (shown as
colored blocks) based on prior knowledge or data. L2O infer-
ences solve the optimization problem for given model inputs.
Certificates label if each inference is consistent with training.
If so, it is trustworthy; otherwise, the faulty model part errs.

A paradigm shift in machine learning is to con-
struct explainable and transparent models, often
called explainable AI (XAI) [65]. This is crucial
for sensitive applications like medical imaging
and finance (e.g. see recent work on the role of
explainability [1, 9, 24, 61]). Yet, many common-
place models (e.g. fully connected feed forward)
offer limited interpretability. Prior XAI works give
explanations via tools like sensitivity analysis [61]
and layer-wise propagation [10, 49], but these
neither quantify trustworthiness nor necessarily
shed light on how to correct “bad" behaviours.
Our work shows how learning to optimize (L2O)
can be used to directly embed explainability into
models.

The scope of this work is machine learning (ML) applications where domain experts can create approximate
models by hand. In our setting, the inference NΘ(d) of a model NΘ with input d solves an optimization problem.
That is, we use

NΘ(d) ≜ argmin
x∈CΘ(d)

fΘ(x ; d), (1)

where fΘ is a function and CΘ(d) ⊆ Rn is a constraint set (e.g. encoding prior information like physical quantities),
and each (possibly) includes dependencies on weights Θ. Note the model NΘ is implicit since its output is defined
by an optimality condition rather than an explicit computation. To clarify the scope of the word explainable in
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Figure 2: Left shows learning to optimize (L2O) model. Colored blocks denote prior knowledge and data-driven
terms. Middle shows an iterative algorithm formed from the blocks (e.g. via proximal/gradient operators) to
solve optimization problem. Right shows a trained model’s inference NΘ⋆(d) and its certificates. Certificates
identify if properties of inferences are consistent with training data. Each label is associated with properties of
specific blocks (indicated by labels next to blocks in right schematic). Labels take value pass Ë, warning , or
fail é, and values identify if inference features for model parts are trustworthy.

L2O Implicit Flags Obtainable Model Property

✓ Intuitive Design

✓ Memory Efficient

✓ ✓ Satisfy Constraints + (above)

✓ Trustworthy Inferences

✓ ✓ ✓ Explainable Errors + (above)

Table 1: Summary of design features and corresponding model properties. Design features yield additive
properties, as indicated by “+ (above).” Proposed implicit L2O models with certificates have intuitive design,
memory efficient training, inferences that satisfy optimality/constraint conditions, certificates of trustworthiness,
and explainable errors.

thi swork, we adopt the following conventions. We say a model is explainable provided a domain expert can
identify the core design elements of a model and how they translated to expected inference properties. We say a
particular inference is explainable provided its properties can be linked to the model’s design and intended use.
Explainable models and inferences are achieved via L2O with our proposed certificates.

A standard practice in software engineering is to code post-conditions after function calls return. Post-conditions
are criteria used to validate what the user expects from the code and ensure code is not executed under the
wrong assumptions. [4] We propose use of these for ML model inferences (see Figures 1 and 10). These
conditions enable use of certificates with labels – pass, warning or fail – to describe each model inference. We
define an inference to be trustworthy provided it satisfies all provided post-conditions.

Two ideas, optimization and certificates, form a concrete notion of XAI. Prior and data-driven knowledge can be
encoded via optimization, and this encoding can be verified via certificates (see Figure 5). To illustrate, consider
inquiring why a model generated a “bad” inference (e.g. an inference disagrees with observed measurements).
The first diagnostic step is to check certificates. If no fails occurred, the model was not designed to handle the
instance encountered. In this case, the model in (1) can be redesigned to encode prior knowledge of the situation.
Alternatively, each failed certificate shows a type of error and often corresponds to portions of the model (see
Figures 1 and 2). The L2O model allows debugging of algorithmic implementations and assumptions to correct
errors. In a sense, this setup enables one to manually backpropagate errors to fix models (similar to training).

Contributions This work brings new explainability and guarantees to deep learning applications using prior
knowledge. We propose novel implicit L2O models with intuitive design, memory efficient training, inferences that
satisfy optimality/constraint conditions, and certificates that either indicate trustworthiness or flag inconsistent
inference features.
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1.1 Related Works

Closely related to our work is deep unrolling, a subset of L2O wherein models consist of a fixed number of
iterations of a data-driven optimization algorithm. Deep unrolling has garnered great success and provides
intuitive model design. We refer readers to recent surveys [3, 18, 48, 63] for further L2O background. Downsides
of unrolling are growing memory requirements with unrolling depth and a lack of guarantees.

Implicit models circumvent these two shortcomings by defining models using an equation (e.g. as in (1)) rather
than prescribe a fixed number of computations as in deep unrolling. This enables inferences to be computed
by iterating until convergence, thereby enabling theoretical guarantees. Memory-efficient training techniques
were also developed for this class of models, which have been applied successfully in games, [33] music source
separation, [40] language modeling, [11], segmentation, [12] and inverse problems. [30, 32] The recent work
[30] most closely aligns with our L2O methodology.

Related XAI works use labels/cards. Model Cards [47] document intended and appropriate uses of models. Care
labels [50, 51] are similar, testing properties like expressivity, runtime, and memory usage. FactSheets [8] are
modeled after supplier declarations of conformity and aim to identify models’ intended use, performance, safety,
and security. These works provide statistics at the distribution level, complementing our work for trustworthiness
of individual inferences.

2 Explainability via Optimization

Model Design The design of L2O models is naturally decomposed into two steps: optimization formulation and
algorithm choice. The first step is to identify a tentative objective to encode prior knowledge via regularization
(e.g. sparsity) or constraints (e.g. unit simplex for classification). We may also add terms that are entirely
data-driven. Informally, this step identifies a special case of (1) of the form

NΘ(d) ≜ argmin
x

(prior knowledge)+ (data-driven terms), (2)

where the constraints are encoded in the objective using indicator functions, equaling 0 when constraint is
satisfied and ∞ otherwise. The second design step is to choose an algorithm for solving the chosen optimization
problem (e.g. proximal-gradient or ADMM [23]). We use iterative algorithms, and the update formula for
each iteration is given by a model operator TΘ(x ; d). Updates are typically composed in terms of gradient and
proximal operations. Some parameters (e.g. step sizes) may be included in the weights Θ to be tuned during
training. Given data d , computation of the inference NΘ(d) is completed by generating a sequence {xkd } via the
relation

xk+1d = TΘ(x
k
d ; d), for all k ∈ N. (3)

By design, {xkd } converges to a solution of (1), and we set

NΘ(d) = lim
k→∞

xkd . (4)

In our context, each model inference NΘ(d) is defined to be an optimizer as in (1). Hence properties of inferences
can be explained via the optimization model (1); note this is unlike blackbox models where one has no way of
explaining why a particular inference is made. The iterative algorithm is applied successively until stopping criteria
are met (i.e. in practice we choose an iterate K, possibly dependent on d , so that NΘ(d) ≈ xKd ). Because {xkd }
converges, we may adjust stopping criteria to approximate the limit to arbitrary precision, which implies we may
provide guarantees on model inferences (e.g. satisfying a linear system of equations to a desired precision [30,
32, 33]). The properties of the implicit L2O model (1) are summarized by Table 1.

Example of Model Design. To make the model design procedure concrete, we illustrate this process on a
classic problem: sparse recovery from linear measurements. These problems appear in many applications such as
radar imaging [64] and speech recognition [28]. Here the task is to estimate a signal x⋆d via access to linear
measurements d satisfying d = Ax⋆d for a known matrix A.
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Figure 3: Example inferences for test data d . The sparsified version Kx of each inference x is shown (c.f.
Figure 6) along with certificates. Ground truth was taken from test dataset of implicit dictionary experiment.
The second from left is sparse and inconsistent with measurement data. The second from right complies
with measurements but is not sparse. The rightmost is generated using our proposed model (IDM), which
approximates the ground truth well and is trustworthy.

Step 1: Choose Model. Since true signals are known to be sparse, we include ℓ1 regularization. To comply with
measurements, we add a fidelity term. Lastly, to capture hidden features of the data distribution, we also add a
data-driven regularization. Putting these together gives the problem

min
x∈Rn

τ∥x∥1︸ ︷︷ ︸
sparsity

+ ∥Ax − d∥22︸ ︷︷ ︸
fidelity

+ ∥W1Ax∥2 + ⟨x,W2d⟩︸ ︷︷ ︸
data-driven regularizer

, (5)

where τ > 0 and W1 and W2 are two tunable matrices. This model encodes a balance of three terms – sparsity,
fidelity, data-driven regularization – each quantifiable via (5).

Step 2: Choose Algorithm. The proximal-gradient scheme generates a sequence {zk} converging to a limit which
solves (5). By simplifying and combining terms, the proximal-gradient method can be written via the iteration

zk+1 = ητλ
(
zk − λW (Azk − d)

)
, for all k ∈ N, (6)

where λ > 0 is a step-size, W is a matrix defined in terms of W1, W2, and A⊤, and ηθ is the shrink operator
given by

ηθ(x) ≜ sign(x)max(|x | − θ, 0). (7)

From the update on the right hand side of (6), we see the step size λ can be “absorbed” into the tunable matrix
W and the shrink function parameter can be set to θ > 0. That is, this example model has weights Θ = (W, θ, τ)
with model operator

TΘ(x ; d) ≜ ηθ
(
x −W (Ax − d)

)
, (8)

which resembles the updates of previous L2O works. [19, 31, 45] Inferences are computed via a sequence {xkd }
with updates

xk+1d = TΘ(x
k
d ; d), for all k ∈ N. (9)

The model inference is the limit x∞d of this sequence {xkd }.

Convergence Evaluation of the model NΘ(d) is well-defined and tractable under a simple assumption. By a
classic result [41], it suffices to ensure, for all d , TΘ(·; d) is averaged, i.e. there is α ∈ (0, 1) and Q such that
TΘ(x ; d) = (1−α)x+αQ(x ; d), where Q is 1-Lipschitz in x . When this property holds, the sequence {xkd } in (3)
converges to a solution x⋆d . This may appear to be a strong assumption; however, common operations in convex
optimization algorithms (e.g. proximals and gradient descent updates) are averaged. For entirely data-driven
portions of TΘ, several activation functions are 1-Lipschitz [20, 27] (e.g. ReLU and softmax), and libraries
like PyTorch [53] include functionality to force affine mappings to be 1-Lipschitz (e.g. spectral normalization).
Furthermore, by making TΘ(·; d) a contraction, a unique fixed point is obtained. We emphasize, even without
forcing TΘ to be averaged, {xk} is often observed to converge in practice [11, 30, 32] upon tuning weights Θ.
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Concept Quantity Formula

Sparsity Nonzeros ∥x∥0
≈ Sparsity ℓ1 norm ∥x∥1

Measurements Relative Error ∥Ax − d∥/∥d∥
Soft Constraint Distance to Set C dC(x)

Smooth Images Total Variation ∥∇x∥1
Convergence Iterate Residual ∥xk − xk−1∥

Classifier Probability short
1−maxi xi

Confidence of one-hot label

Regularization Proximal Residual ∥x − proxfΩ(x)∥

Table 2: Each certificate is tied to a high-level concept, and its corresponding property value is quantified using
a formula. For classifier confidence, we assume x is in the unit simplex. The proximal is a data-driven update for
fΩ with weights Ω.

2.1 Trustworthiness Certificates

Explainable models justify whether each inference is trustworthy. We propose providing justification in the form
of certificates, which verify various properties of the inference are consistent with those of the model inferences
on training data and/or prior knowledge. Each certificate is a tuple of the form (name, label) with a property
name and a corresponding label which has one of three values: pass, warning, or fail (see Figure 3). Each
certificate label is generated by two steps. The first is to apply a function that maps inferences (or intermediate
states) to a nonnegative scalar value α quantifying a property of interest. The second step is to map this scalar
to a label. Labels are generated via the flow:

(Inference)→ (Property Value)→ (Certificate Label). (10)

Property Value Functions Several quantities may be used to generate certificates. In the model design
example above, a sparsity property can be quantified by counting the number of nonzero entries in a signal,
and a fidelity property can use the relative error ∥Ax − d∥/∥d∥ (see Figure 3). To be most effective, property
values are chosen to coincide with the optimization problem used to design the L2O model, i.e. to quantify
structure of prior and data-driven knowledge. This enables each certificate to clearly validate a portion of the
model (see Figure 2). Since various concepts are useful for different types of modeling, we provide a brief (and
non-comprehensive) list of concepts and possible corresponding property values in Table 2.

One property concept deserves particular attention: data-driven regularization. This regularization is important
for discriminating between inference features that are qualitatively intuitive but difficult to quantify by hand.
Rather than approximate a function, implicit L2O models directly approximate gradients/proximals. These
provide a way to measure regularization indirectly via gradient norms/residual norms of proximals. Moreover,
these norms (e.g. see last row of Table 2) are easy to compute and equal zero only at local minima of regularizers.
To our knowledge, this is the first work to quantify trustworthiness using the quality of inferences with respect
to data-driven regularization.

Certificate Labels Typical certificate labels should follow a trend where inferences often obtain a pass label to
indicate trustworthiness while warnings occur occasionally and failures are obtained in extreme situations. Let
the samples of model inference property values α ∈ [0,∞) come from distribution PA. We pick property value
functions for which small α values are desirable and the distribution tail consists of larger α. Intuitively, smaller
property values of α resemble property values of inferences from training and/or test data. Thus, labels are
assigned according to the probability of observing a value less than or equal to α, i.e. we evaluate the cumulative
distribution function (CDF) defined for probability measure PA by

CDF(α) =

∫ α
0

dPA, (11)

5



Prop Value

Probability

PassË

Warning

Failé

Figure 4: Probability distribution for values and labels of a particular model property. The majority of samples
drawn from this distribution are set to pass while the outliers in the tail fail.
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Figure 5: This diagram illustrates relationships between certificates, models, training data, and prior knowledge.
Prior knowledge is embedded directly into model design via the L2O methodology. This also gives rise to
quantities to measure for certificate design. The designed model is tuned using training data to obtain the
“optimal” L2O model (shown by arrows touching top middle + sign). The certificates are tuned to match the
test samples and/or model inferences on training data (shown by arrows with bottom middle + sign). Together
the model and certificates yield inferences with certificates of trustworthiness.

Labels are chosen according to the task at hand. Let pp, pw, and pf = 1− pp − pw be the probabilities for pass,
warning, and fail labels, respectively. Labels are made for α via

Label(α) =


pass if CDF(α) < pp

warning if CDF(α) ∈ [pp, 1− pf)
fail otherwise.

(12)

The remaining task is to estimate the CDF value for a given α. Recall we assume access is given to property
values {αi}Ni=1 from ground truths or inferences on training data, where N is the number of data points. To this
end, given an α value, we estimate its CDF value via the empirical CDF:

CDF(α) ≈
|{αi : αi ≤ α, 1 ≤ i ≤ N}|

N
=
# of αi ’s ≤ α

N
, (13)

where | · | denotes set cardinality. For large N, (13) well approximates the continuous CDF.

Certificate Implementation As noted in the introduction, trustworthiness certificates are evidence an inference
satisfies post-conditions (i.e. passes various tests). Thus, they are to be used in code in the same manner as
standard software engineering practice. Consider the snippet of code in Figure 10. As usual, an inference is
generated by calling the model. However, alongside the inference x, certificates certs are returned that label
whether the inference x passes tests that identify consistency with training data and prior knowledge.

3 Experiments

Each numerical experiment shows an application of novel implicit L2O models, which were designed directly
from prior knowledge. Associated certificates of trustworthiness are used to emphasize the explainability of
each model and illustrate use-cases of certificates. Experiments were coded using Python with the PyTorch
library [53], the Adam optimizer [39], and, for ease of re-use, were run via Google Colab. We emphasize these
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experiments are for illustration of intuitive and novel model design and trustworthiness and are not benchmarked
against state-of-the-art models. The datasets generated and/or analysed during the current study are available
in the following repository: github.com/typal-research/xai-l2o. All methods were performed in accordance with
the relevant guidelines and regulations.

3.1 Algorithms

To illustrate evaluation of L2O model used herein, we begin with an example L2O model and algorithm.
Specifically, models used for the first two experiments take the form

min
x∈Rn
f (Kx) + h(x) s.t. ∥Mx − d∥ ≤ δ, (14)

where K andM are linear operators, δ ≥ 0 is a noise tolerance, and f and h are proximable2 functions. Introducing
auxiliary variables w and p and dual variable ν = (ν1, ν2), linearized ADMM [60] (L-ADMM) can be used to
iteratively update the tuple (p, w, ν, x) of variables via

pk+1 = proxλf
(
pk + λ(νk1 + α(Kx

k − pk))
)

(15a)

w k+1 = projB(d,δ)
(
w k + λ(νk2 + α(Mx

k − w k))
)

(15b)

νk+11 = νk1 + α(Kx
k − pk+1) (15c)

νk+12 = νk2 + α(Mx
k − w k+1) (15d)

r k = K⊤
(
2νk+11 − νk1

)
+M⊤

(
2νk+12 − νk2

)
(15e)

xk+1 = proxβh
(
xk − βr k

)
, (15f)

where projB(d,δ) is the Euclidean projection onto the Euclidean ball of radius δ centered at d , proxf is the proximal
operator for a function f , and the scalars α, β, λ > 0 are appropriate step sizes. Further details, definitions, and
explanations are available in the appendices. Note the updates are ordered so that xk+1 is the final step to make
it easy to backprop through the final xk update.

3.2 Implicit Model Training

Standard backpropagation cannot be used for implicit models as it requires memory capacities beyond existing
computing devices. Indeed, storing gradient data for each iteration in the forward propagation (see (3)) scales
the memory during training linearly with respect to the number of iterations. Since the limit x∞ solves a fixed
point equation, implicit models can be trained by differentiating implicitly through the fixed point to obtain a
gradient. This implicit differentiation requires further computations and coding. Instead of using gradients,
we utilize Jacobian-Free Backpropagation (JFB) [26] to train models. JFB further simplifies training by only
backpropagating through the final iteration, which was proven to yield preconditioned gradients. JFB trains
using fixed memory (with respect to the K steps used to estimate NΘ(d)) and avoids numerical issues arising
from computing exact gradients, [13] making JFB and its variations [29, 35] apt for training implicit models.

3.3 Implicit Dictionary Learning

Setup In practice, high dimensional signals often approximately admit low dimensional representations [16, 42,
52, 54, 55, 70]. For illustration, we consider a linear inverse problem where true data admit sparse representations.
Here each signal x⋆d ∈ R250 admits a representation s⋆d ∈ R50 via a transformation M (i.e. x⋆d = Ms

⋆
d). A matrix

A ∈ R100×250 is applied to each signal x⋆d to provide linear measurements d = Ax⋆d . Our task is to recover x⋆d
given knowledge of A and d without the matrix M. Since the linear system is quite under-determined, schemes
solely minimizing measurement error (e.g. least squares approaches) fail to recover true signals; additional
knowledge is essential.

2A function is proximable if it admits a “nice” closed-form proximal formula, where proxf (x) ≜ argmin
z

f (z) + ∥z − x∥2.
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Original: x⋆d Sparsified: Kx⋆d
Figure 6: Training IDM yields sparse representation of inferences. Diagram shows a sample true data x (left)
from test dataset and its sparsified representation Kx (right).

Ground truth TV Min U-Net F-FPN Implicit L2O
SSIM: 1.000 SSIM: 0.379 SSIM: 0.806 SSIM: 0.853 SSIM: 0.891
PSNR: ∞ PSNR: 21.17 PSNR: 27.83 PSNR: 30.32 PSNR: 31.87

Fail é – Data Regularization Fail é – Fidelity Fail é – Box Constraint Trustworthy Ë

Figure 7: Reconstructions on test data computed via U-Net, [37] TV minimization, F-FPNs, [32] and Implicit
L2O (left to right). Bottom row shows expansion of region indicated by red box. Pixel values outside [0, 1]
are flagged. Fidelity is flagged when images do not comply with measurements, and regularization is flagged
when texture features of images are sufficiently inconsistent with true data (e.g. grainy images). Labels are
provided beneath each image (n.b. fail is assigned to images that are worse than 95% of L2O inferences on
training data). Shown comparison methods fail while the Implicit L2O image passes all tests.

Model Design All convex regularization approaches are known lead to biased estimators whose expectation
does not equal the true signal. [25] However, the seminal work [15] of Candes and Tao shows ℓ1 minimization
(rather than additive regularization) enables exact recovery under suitable assumptions. Thus, we minimize a
sparsified signal subject to linear constraints via the implicit dictionary model (IDM)

NΘ(d) ≜ argmin
x∈R250

∥Kx∥1 s.t. Ax = d. (16)

The square matrix K is used to leverage the fact x has a low-dimensional representation by transforming x into
a sparse vector. Linearized ADMM [60] (L-ADMM) is used to create a sequence {xkd } as in (3). The model
NΘ has weights Θ = K. If it exists, the matrix K−1 is known as a dictionary and KNΘ(d) is the corresponding
sparse code; hence the name IDM for (16). To this end, we emphasize K is learned during training and is
different from M, but these matrices are related since we aim for the product Kx⋆d = KMs

⋆
d to be sparse. Note

we use L-ADMM to provably solve (16), and NΘ is easy to train. More details can be found in the appendix.

Discussion IDM combines intuition from dictionary learning with a reconstruction algorithm. Two properties
are used to identify trustworthy inferences: sparsity and measurement compliance (i.e. fidelity). Sparsity and
fidelity are quantified via the ℓ1 norm of the sparsified inference (i.e. KNΘ(d)) and relative measurement error.
Figure 6 shows the training the model yields a sparsifying transformation K. Figure 3 shows the proposed
certificates identify “bad” inferences that might, at first glance, appear to be “good” due to their compatibility
with constraints. Lastly, observe the utility of learning K, rather than approximating M, is K makes it is easy to
check if an inference admits a sparse representation. Using M to check for sparsity is nontrivial.
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Method Avg. PSNR Avg. SSIM Box Constraint Fail Fidelity Fail Data Reg. Fail # Params

U-Net 27.32 dB 0.761 5.75 % 96.95% 3.20% 533,593

TV Min 28.52 dB 0.765 0.00 % 0.00% 25.40% 4

F-FPN† 30.46 dB 0.832 47.15% 0.40% 5.05% 96,307

Implicit L2O 31.73 dB 0.858 0.00% 0.00% 5.70% 59,697

Table 3: Average PSNR/SSIM for CT reconstructions on the 2,000 image LoDoPab testing dataset. † Reported
from original work. [32] U-Net was trained with filtered backprojection as in prior work. [37] Three properties
are used to check trustworthiness: box constraints, compliance with measurements (i.e. fidelity), and data-driven
regularization (via the proximal residual in Table 2). Failed sample percentages are numerically estimated via (13).
Sample property values “fail” if they perform worse than 95% of the inferences on the training data, i.e. its CDF
value exceeds 0.95. Implicit L2O yields the most passes on test data.

3.4 CT Image Reconstruction

Setup Comparisons are provided for low-dose CT examples derived from the Low-Dose Parallel Beam dataset
(LoDoPab) dataset, [43] which has publically available phantoms derived from actual human chest CT scans. CT
measurements are simulated with a parallel beam geometry and a sparse-angle setup of only 30 angles and 183
projection beams, giving 5,490 equations and 16,384 unknowns. We add 1.5% Gaussian noise to each individual
beam measurement. Images have resolution 128× 128. To make errors easier to contrast between methods, the
linear systems here are under-determined and have more noise than those in some similar works. Image quality is
determined using the Peak Signal-To-Noise Ratio (PSNR) and structural similarity index measure (SSIM). The
training loss was mean squared error. Training/test datasets have 20,000/2,000 samples.

Model Design The model for the CT experiment extends the IDM. In practice, it has been helpful to utilize a
sparsifying transform. [36, 68] We accomplish this via a linear operator K, which is applied and then this product
is fed into a data-driven regularizer fΩ with parameters Ω. We additionally ensure compliance with measurements
from the Radon transform matrix A, up to a tolerance δ. In our setting, all pixel values are also known to be in
the interval [0, 1]. Combining our prior knowledge yields the implicit L2O model

NΘ(d) ≜ argmin
x∈[0,1]n

fΩ(Kx) s.t. ∥Ax − d∥ ≤ δ. (17)

Here NΘ has weights Θ = (Ω, K, α, β, λ) with α, β and λ step-sizes in L-ADMM. More details can be found in
the appendix.

Discussion Comparisons of our method (Implicit L2O) with U-Net, [37] F-FPNs, [32] and total variation (TV)
Minimization are given in Figure 7 and Table 3. Table 3 shows the average PSNR and SSIM reconstructions.
Our model obtains the highest average PSNR and SSIM values on the test data while using 11% and 62% as
many weights as U-Net and F-FFPN, indicating greater efficiency of the implicit L2O framework. Moreover, the
L2O model is designed with three features: compliance with measurements (i.e. fidelity), valid pixel values, and
data-driven regularization. Table 3 also shows the percentage of “fail” labels for these property values. Here, an
inference fails if its property value is larger than 95% of the property values from the training/true data, i.e. we
choose pp = 0.95, pw = 0, and pf = 0.05 in (12). For the fidelity, our model never fails (due to incorporating
the constraint into the network design). Our network fails 5.7% of the time for the data-driven regularization
property. Overall, the L2O model generates the most trustworthy inferences. This is intuitive as this model
outperforms the others and was specifically designed to embed all of our knowledge, unlike the others. To provide
better intuition of the certificates, we also show the certificate labels for an image from the test dataset in
Figure 7. The only image to pass all provided tests is the proposed implicit L2O model. This knowledge can help
identify trustworthy inferences. Interestingly, the data-driven regularization enabled certificates to detect and
flag “bad” TV Minimization features (e.g. visible staircasing effects [17, 58]), which shows novelty of certificates
as these features are intuitive, yet prior methods to quantify this were, to our knowledge, unknown.
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Figure 8: Network with 5 CFMMs and 3 tokens; structure replicates an experiment in recent work. [7] Black
lines show available tokens for trade in each CFMM.

3.5 Optimal Cryptoasset Trading

Setup Ethereum is a blockchain technology anyone can use to deploy permanent and immutable decentralized
applications. This technology enables creation of decentralized finance (DeFi) primitives, which can give
censorship-resistant participation in digital markets and expand the use of stable assets [38, 56] and exchanges
[34, 66, 69] beyond the realm of traditional finance. Popularity of cryptoasset trading (e.g. GRT and Ether) is
exploding with the DeFi movement. [62, 67]

Decentralized exchanges (DEXs) are a popular entity for exchanging cryptoassets (subject to a small transaction
fee), where trades are conducted without the need for a trusted intermediary to facilitate the exchange. Popular
examples of DEXs are constant function market makers (CFMMs), [5] which use mathematical formulas to
govern trades. To ensure CFMMs maintain sufficient net assets, trades within CFMMs maintain constant total
reserves (as defined by a function φ). A transaction in a CFMM tendering x assets in return for y assets with
reserves assets r is accepted provided

φ(r + γx − y) ≥ φ(r), (18)

with γ ∈ (0, 1] a trade fee parameter. Here r, x, y ∈ Rn with each vector nonnegative and i-th entry giving
an amount for the i-th cryptoasset type (e.g. Ether, GRT). Typical choices [6] of φ are weighted sums and
products, i.e.

φ(r) =

n∑
i=1

wi ri and φ(r) =
n∏
i=1

rwii . (19)

where w ∈ Rn has positive entries.

This experiment aims to maximize arbitrage. Arbitrage is the simultaneous purchase and sale of equivalent
assets in multiple markets to exploit price discrepancies between the markets. This can be a lucrative endeavor
with cryptoassets. [46] For a given snapshot in time, our arbitrage goal is to identify a collection of trades
that maximize the cryptoassets obtainable by trading between different exchanges, i.e. solve the (informal)
optimization problem

max
trade

Assets(trade) s.t. trade ∈ {valid trades}. (20)

The set of valid trades is all trades satisfying the transaction rules for CFMMs given by (18) with nonnegative
values for tokens tendered and received (i.e. x, y ≥ 0). Prior works [6, 7] deal with an idealistic noiseless setting
while recognizing executing trades is not without risk (e.g. noisy information, front running, [21] and trade
delays). To show implications of trade risk, we incorporate noise in our trade simulations by adding noise ε ∈ Rn

to CFMM asset observations, which yields noisy observed data d = (1 + ε)⊙ r . Also, we consider trades with
CFMMs where several assets can be traded simultaneously rather than restricting to pairwise swaps.

Model Design The aim is to create a model that infers a trade (x, y) maximizing utility. For a nonnegative
vector p ∈ Rn of reference price valuations, this utility U is the net change in asset values provided by the trade, i.e.
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Method Predicted Utility Executed Utility Trade Execution Risk Fail Profitable Fail # Params

Analytic 11.446 0.00 0.00% 100.00% 0% 0

Implicit L2O 0.665 0.6785 88.20% 3.6% 11.80% 126

Table 4: Averaged results on test data for trades in CFMM network. The analytic method always predicts a
profitable trade, but fails to satisfy the constraints (due to noise). This failure is predicted by the certificates
“risk” certificate and reflected by the 0% trade execution. Alternatively, the L2O scheme makes conservative
predictions regarding constraints, which limits profitability. However, using these certificates, executed L2O
trades are always profitable and satisfy constraints.

e
d

c
b

a

1

2

3

L2O Trade
Trade Risk: passË
Profitable: passË

Utility: 0.434

e
d

c
b

a

1

2

3

Analytic Trade
Trade Risk: failé
Profitable: passË

Utility: 0.000

Figure 9: Example of proposed L2O (left) and analytic (right) trades with noisy data d . Blue and green lines
show proposed cryptoassets x and y to tender and receive, respectively (widths show magnitude). The analytic
trade is unable to account for trade risks, causing it to propose large trades that are not executed (giving
executed utility of zero). This can be anticipated by the failed trade risk certificate. On the other hand, the
L2O scheme is profitable (utility is 0.434) and is executed (consistent with the pass trade risk label).

U(x, y) ≜
m∑
j=1

〈
Ajp, Aj(y j − x j)

〉
︸ ︷︷ ︸
net asset value change

, (21)

where Aj is a matrix mapping global coordinates of asset vector to the coordinates of the j-th CFMM (see
appendix for details). For noisy data d , trade predictions can include a “cost of risk.” This is quantified by
regularizing the trade utility, i.e. introducing a penalty term. For matrices W j , we model risk by a simple
quadratic penalty via

UΘ(x, y) ≜ U(x, y)−
1

2
·
m∑
j=1

∥AjW j(x − y)∥2.︸ ︷︷ ︸
risk model

(22)

The implicit L2O model infers optimal trades via UΘ, i.e.

NΘ(d) ≜ (xd , yd) = argmax
(x,y)∈CΘ(d)

UΘ(x, y), (23)

where CΘ(d) encodes constraints for valid transactions. The essence of NΘ is to output solutions to (20) that
account for transaction risks. A formulation of Davis-Yin operator splitting [22] is used for model evaluation.
Further details of the optimization scheme can be found in the appendix.
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Discussion The L2O model contains three core features: profit, risk, and trade constraints. The model is
designed to output trades that satisfy provided constraints, but note these are noisy and thus cannot be used
to a priori determine whether a trade will be executed. For this reason, fail flags identify conditions to warn
a trader when a trade should be aborted (due to an “invalid trade”). This can avoid wasting transaction fees
(i.e. gas costs). Figure 9 shows an example of two trades, where we note the analytic method proposes a large
trade that is not executed since it violates the trade constraints (due to noisy observations). The L2O method
proposes a small trade that yielded arbitrage profits (i.e. U > 0) and has pass certificates. Comparisons are
provided in Table 4 between the analytic and L2O models. Although the analytic method has “ideal” structure,
it performs much worse than the L2O scheme. In particular, no trades are executable by the analytic scheme
since the present noise always makes the proposed transactions fail to satisfy the actual CFMM constraints.
Consistent with this, every proposed trade by the analytic trade is flagged as risky in Table 4. The noise is on
the order of 0.2% Gaussian noise of the asset totals.

4 Conclusions

Explainable ML models can be concretely developed by fusing certificates with the L2O methodology. The
implicit L2O methodology enables prior and data-driven knowledge to be directly embedded into models, thereby
providing clear and intuitive design. This approach is theoretically sound and compatible with state-of-the-art
ML tools. The L2O model also enables construction of our certificate framework with easy-to-read labels,
certifying if each inference is trustworthy. In particular, our certificates provide a principled scheme for the
detection of inferences with “bad” features via data-driven regularization. Thanks to this optimization-based
model design (where inferences can be defined by fixed point conditions), failed certificates can be used to
discard untrustworthy inferences and may help debugging the architecture. This reveals the interwoven nature of
pairing implicit L2O with certificates. Our experiments illustrate these ideas in three different settings, presenting
novel model designs and interpretable results. Future work will study extensions to physics-based applications
where PDE-based physics can be integrated into the model [44, 57, 59].
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A Certificate Code Snippet

The figure below shows how code for a model function can be tweaked to include certificates per standard
software engineering practice.

Inference + Certificates → Trustworthy Inference

def TrustworthyInference(d):
x, certs = model(d)
if ’warning ’ in certs:

warnings.warn(’Warning Msg’)
if ’fail’ in certs:

raise Exception(’Error Msg’)
return x

Figure 10: Example Python code to use certificates as post-conditions. Actual code should use specific
warning/exception messages for flagged entries in certs.
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B Linearized ADMM Formulation

Two of the numerical examples utilize variations of ADMM. This section is dedicated to a derivation of linearized
ADMM used to solve problems of the form

min
x∈Rn
f (Kx) + h(x) s.t. ∥Mx − d∥ ≤ δ, (24)

where K and M are linear operators, δ > 0 is a noise tolerance, and f and h are proximable. First, we define the
proximal operator for a closed, convex, and proper function by

proxf (x) ≜ argmin
z∈Rn

f (z) +
1

2
∥z − x∥2. (25)

Letting δC be the indicator function for a closed and convex set C with value 0 for x ∈ C and ∞ otherwise, the
Euclidean projection projC on C is a special case of the proximal, i.e.

projC(x) ≜ proxδC (x) = argmin
z∈C

1

2
∥z − x∥2. (26)

Next observe (24) can be rewritten as

min
x,w
f (Kx) + h(x) + δB(d,δ)(w) s.t. Mx − w = 0. (27)

Defining the concatenation ξ = (p, w), the function

g(ξ) ≜ f (p) + δB(d,δ)(w), (28)

and S = [K;M], yields
min
x,ξ
h(x) + g(ξ) s.t. Sx − ξ = 0. (29)

Then linearized ADMM [60] yields

xk+1 = proxβh
(
xk − βS⊤(νk + α(Sxk − ξk))

)
(30a)

ξk+1 = proxλg
(
ξk + λ(νk + α(Sxk+1 − ξk))

)
(30b)

νk+1 = νk + α(Sxk+1 − ξk+1), (30c)

where α, β, λ are step-sizes. Rearranging, we obtain

ξk+1 = proxλg
(
ξk + λ(νk + α(Sxk − ξk))

)
(31a)

νk+1 = νk + α(Suk − ξk+1) (31b)

xk+1 = proxβh
(
xk − βS⊤(νk+1 + α(Sxk − ξk+1))

)
. (31c)

Expanding ξk+1 reveals block-wise updates, i.e.

pk+1 = proxλf (p
k + λ(νk1 + α(Kx

k − pk)) (32a)

w k+1 = PB(d,ε)(w
k + λ(νk2 + α(Mx

k − w k))), (32b)

where νk = (νk1 , ν
k
2 ) and PB(d,εθ) is the projection onto the Euclidean ball of radius εθ centered about d . Writing

out expanded forms gives

pk+1 = proxλf
(
pk + λ(νk1 + α(Kx

k − pk))
)

(33a)

w k+1 = PB(d,δ)

(
w k + λ(νk2 + α(Mx

k − w k))
)

(33b)

νk+11 = νk1 + α(Kx
k − pk+1) (33c)

νk+12 = νk2 + α(Mx
k − w k+1) (33d)

xk+1 = proxβh
(
xk − βS⊤(νk+1 + α(Sxk − ξk+1))

)
(33e)
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Expanding the update for xk reveals
xk+1 = xk − βS⊤(νk+1 + α(Sxk − ξk+1)) (34a)

= xk − β
[
K

M

]⊤ [
νk+11 + α(Kxk − pk+1)
νk+12 + α(Mxk − w k+1)

]
(34b)

= xk − βK⊤
(
νk+11 + α(Kxk − pk+1)

)
(34c)

− βM⊤
(
νk+12 + α(Mxk − w k+1)

)
(34d)

= xk − βK⊤
(
2νk+11 − νk1

)
(34e)

− βM⊤
(
2νk+12 − νk2

)
. (34f)

The final form we implement is the tuple of update relations

pk+1 = proxλf
(
pk + λ(νk1 + α(Kx

k − pk))
)

(35a)

w k+1 = PB(d,δ)

(
w k + λ(νk2 + α(Mx

k − w k))
)

(35b)

νk+11 = νk1 + α(Kx
k − pk+1) (35c)

νk+12 = νk2 + α(Mx
k − w k+1) (35d)

r k = K⊤
(
2νk+11 − νk1

)
+M⊤

(
2νk+12 − νk2

)
(35e)

xk+1 = proxβh
(
xk − βr k

)
. (35f)

C Supplement for Implicit Dictionary

Observe (16) is a special case of (24), taking h = 0, M = A, and f = ∥ · ∥1. That is, in this case, we obtain the iteration

pk+1 = ηλ

(
pk + λ(νk1 + α(Kx

k − pk))
)

(36a)

νk+11 = νk1 + α(Kx
k − pk+1) (36b)

νk+12 = νk2 + α(Ax
k − d) (36c)

r k = K⊤
(
2νk+11 − νk1

)
+ A⊤

(
2νk+12 − νk2

)
(36d)

xk+1 = xk − βr k , (36e)

where ηλ is the shrink function.

D Supplement for CT Reconstruction

Observe (17) is a special case of (24), taking h = δ[0,1]n , M = A, and f = fΩ. That is, in this case, we obtain the iteration

pk+1 = proxλfΩ
(
pk + λ(νk1 + α(Kx

k − pk))
)

(37a)

w k+1 = PB(d,δ)

(
w k + λ(νk2 + α(Ax

k − w k))
)

(37b)

νk+11 = νk1 + α(Kx
k − pk+1) (37c)

νk+12 = νk2 + α(Ax
k − w k+1) (37d)

r k = K⊤
(
2νk+11 − νk1

)
+ A⊤

(
2νk+12 − νk2

)
(37e)

xk+1 = P[0,1]n
(
xk − βr k

)
. (37f)

TV minimization is obtained from (17) by letting fΩ be the ℓ1 norm and K be a discrete differencing operator. For
comparison to an analytic method, we use anisotropic TV minimization, i.e.

min
u∈[0,1]n

∥Du∥1 s.t. ∥Au − d∥ ≤ ε, (38)

where ε is hand-tuned. The Operator Discretization Library (ODL) Python library [2] is used to compute the filtered
backprojections.
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E Supplement for Cryptoasset Trades

This section is broken into three parts. The geometric constraint sets are of particular importance to handle in a decoupled
fashion, and so the first subsection is dedicated to handling CFMM constraints for batches of transactions. Note closed
form expressions exist for pairwise swaps. The second subsection then identifies the projection operations needed. This is
followed by a derivation of a particular operator splitting used to solve the problem, giving explicit lists for updates.

E.1 Constraint Formulation

The dimension of the vector space for each CFMM may differ since some exchanges might not provide access to
particular cryptoassets. Consequently, we follow similarly to recent work [7] in using matrices Aj ∈ Rnj×n to convert global
coordinates into the local coordinates of the j-th CFMM, i.e.

Ajkℓ ≜


1

if token k is in the j-th CFMM’s coordinates

is token ℓ is in global coordinates

0 otherwise.

(39)

Note here we use the backwards of the referenced work, mapping global to local rather than local to global. Let d ∈ Rn×m

be a matrix with the j-th column d j the reserve assets in the j-th CFMM. For weighted geometric CFMMs, set

d̂ ≜ (1 + δ)⊙ d (40)

and

αj ≜

nj∏
j=1

(d̂ ji )
w j
i , for all j ∈ [m], (41)

where δj ≥ 0 is a tolerance, nj is the number of asset types in the j-th CFMM, w j ∈ Rnj is a positive weighting, and

Aj ≜

{
v ∈ Rnj : v + d j ≥ 0,

nj∏
i=1

(v + d j)wi ≥ αj

}
. (42)

The set Aj identifies a weighted geometric mean inequality that must hold for the j-th CFMM. We include the nonnegative
δj to account for noisy data. Choosing δj > 0 gives a buffer for ensuring a transaction is still valid for noisy d (at the cost
of reducing the achievable utility U).

Remark 1. Ideally, we would directly compute PAj (x) in an algorithm computing optimal trades, which can be derived
following an example in Beck’s text. [14] However, this projection introduces unscalable coupling since, using δj = 0 and
d = r ,

[PAj (x)]i =


xi if x ∈ Aj
xi − r ji +

√
(xi + r

j
i )
2 + 4λw ji

2
otherwise,

(43)

where λ > 0 is a solution to
nj∑
i=1

w ji log

xi − r ji +
√
(xi + d

j
i )
2 + 4λw ji

2

 = logα. (44)

As the number of asset types in CFMMs increase, the time of a root finding algorithm to estimate λ also increases. Our
alternative approach avoids this scaling issue. We also note JFB would technically require backpropping through the root
finding scheme, but we suspect this could be avoided (by not attaching gradients during root finding) without adverse
results.

Upon taking logarithms, we may equivalently write

Aj =

{
v : v + d j ≥ 0,

nj∑
i=1

w ji ln(vi + d
j
i ) ≥ ln(αj)

}
(45a)

=
{
v : v + d j ≥ 0,

〈
w, ln(v + d j)

〉
≥ ln(αj)

}
. (45b)

We decouple the constraint Aj by defining the hyperplane

Hj ≜
{
z :

〈
w j , z

〉
= ln(αj)

}
. (46)
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and the element-wise logarithm inequality constraint set

Pj ≜
{
(v, z) : z ≤ ln(v + d j), v + d j ≥ 0

}
. (47)

These definitions yield the equivalence

v ∈ Aj ⇐⇒ ∃ z ∈ Hj s.t. (v, z) ∈ Pj . (48)

This equivalence is useful since, as shown in a subsection below, Hj and Pj admit “nice” projection formulas. If instead
the j-th CFMM is defined using a weighted arithmetic sum, then

Aj =
{
x : x + d j ≥ 0,

〈
w, x + d j

〉
≥

〈
w, d̂ j

〉}
(49a)

=
{
x : x + d j ≥ 0, ⟨w, x⟩ ≥

〈
w, δj ⊙ d j

〉}
. (49b)

Next define the Cartesian product
A = A1 × · · · × Am. (50)

This enables the constraints to be expressed by

CΘ(d) = {(x, y) ≥ 0 : Aj(γjx j − y j) ∈ Aj ∀ j ∈ [m]}. (51)

The tunable weights in CΘ(d) consist of the constraint tolerances δj . Let us introduce an auxiliary variable z and the
block diagonal matrix A = diag(A1, . . . , Am). Additionally, let I1 ⊂ [m] be the subset of CFMM indices with weighted
geometric product constraints and I2 ≜ [m]−I1 the remaining indices for weighted sum constraints. We obtain feasibility
if and only if (v, x, y , z) is a minimizer of the sum of indicator functions

δ≥0(x) + δ≥0(y) + δR(v, x, y) +
∑
j∈I1

δPj (v
j , z j) + δHj (z

j) +
∑
j∈I2

δAj (v
j), (52)

where
R ≜ {(v, x, y) : v = ΓAx − Ay}. (53)

This formulation of the constraints will be used in our operator splitting scheme.

E.2 Proximal/Gradient Operations

This section provides explicit formulas for the proximal and gradient operations needed. First note

P≥0(x) = [x ]+ ≜ max(x, 0), (54)

where the maximum occurs element-wise. The projection onto a hyperplane Hj is given by

PHj (z) = z −
〈
w j , z − ln(d̂ j)

〉
∥w j∥2 w j . (55)

Similarly, if the j-th CFMM uses a weighted arithemtic,

PAj (z) = z −
[
〈
w j , z − δj ⊙ d j

〉
]−

∥w j∥2 w j , (56)

where [z ]− ≜ min(z, 0). Next, the projection PPj is defined element-wise. The element-wise slope of ln(v +d) is 1/(v +d).
The negative reciprocal of the slope (i.e. −(v + d)) gives the slope of the normal line passing through the projection and
the point of interest. Letting (v j , z j) be the projection of (v j , z j) gives the point-slope relation

z j − z j = −(v j + d)⊙ (v j − v j). (57)

Defining the function
φ(v) ≜ v ⊙ v + v ⊙ (d − v j)− d ⊙ v j + ln(v + d)− z j (58)

enables the relation (57) can be expressed as
φ(v j) = 0. (59)

Since the above relation is element-wise and separable, each component v ji can be found independently (e.g. via a Newton
iteration). We emphasize solving for each v ji is independent of the dimension nj whereas computation costs for λ in (44)
increase with nj .

The final projection is for the linear constraint R. The projection PR(v, x, y) is a solution to the problem

min
(v,x,y)

∥v − v∥2 + ∥x − x∥2 + ∥y − y∥2 s.t. v = A(Γx − y). (60)
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v

φ(v)

ln(v + d)

PP(v
∗, z∗)

(v ∗, z∗)

-1 1 2 3 4 5 6

Supplementary Figure S1: Illustration for projection in R2 onto the set P ≜ {(v ∗, z∗) : ln(v +d) ≥ z, v +d ≥ 0},
which is all points below the blue curve ln(v + d). Here d = 1/2. The dashed red curve shows φ(v), the function
defining the optimality condition for the projection in (58).

Let N = [ΓA− A] and q = (x, y) so the problem becomes

min
(v,q)
∥v − v∥2 + ∥q − q∥2 s.t. v = Nq. (61)

It suffices to solve for q since the optimal v is then obtained by applying N. Substituting this in yields the simpler problem

min
q
∥Nq − v∥2 + ∥q − q∥2, (62)

for which the optimality condition is

0 = N⊤(Nq⋆ − v) + q⋆ − q. (63)

Rearranging gives the formula

q⋆ = (I + N⊤N)−1(q + N⊤v). (64)

Letting

M ≜ (I + N⊤N)−1 (65)

and substituting in for N⊤ reveals

[PR(v, x, y)](x,y) = M

[
x + A⊤Γv

y − A⊤v

]
. (66)

Lastly, we express the gradient for the utility UΘ. Here

UΘ(x, y) =

m∑
j=1

〈
Ajp, Aj(y j − x j)

〉
− 1
2
∥W jAj(y j − x j)∥2, (67)

where Aj is used to ensure the utility only measures cryptoassets that are available on the j-th CFMM (i.e. converts the
global coordinates of x j and y j into the local coordinates of the CFMM), and each W j ∈ Rnj×nj penalizes transaction
sizes in the j-th CFMM. For each j ,

∇x jUΘ = −p − (W
jAj)⊤(W jAj)(x j − y j) (68)

and

∇y jUΘ = −∇x jUΘ. (69)

Furthermore, UΘ is L-Lipschitz with

L ≜ max
j∈[m]
∥W jAj∥2. (70)
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E.3 Operator Splitting Formulation

Set ξ = (v, x, y , z) and define the functions

δM(v, z) ≜
∑
j∈I1

δPj (v
j , z j) +

∑
j∈I2

δAj (v
j), (71a)

δH(z) ≜
∑
j∈I1

δHj (z
j), (71b)

where M and H are the sets corresponding to where the indicators in their definitions are all zero. Then define the
functions

f (ξ) ≜ δ≥0(x, y) + δM(v, z), (72a)

g(ξ) ≜ δR(v, x, y) + δH(z) (72b)

h(ξ) ≜ −UΘ(x, y). (72c)

The problem (23) may be equivalently expressed by

min
ξ
f (ξ) + g(ξ) + h(ξ), (73)

where we note f and g are proximable and h is L-Lipschitz differentiable. We use Davis-Yin splitting [22] and α > 0
iterate via

ξk+1 = proxαf (ζ
k) (74a)

ψk+1 = proxαg(2ξ
k+1 − ζk − α∇h(ξk+1)) (74b)

ζk+1 = ζk + ψk+1 − ξk+1. (74c)

For step size α ∈ (0, 2/L), we obtain the desired convergence (ξk+1x , ξk+1y )→ (xd , yd).
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